-
3층 신경망 구현해보기딥러닝 2020. 1. 10. 17:15
3층 신경망 <코드>
import numpy as np def sigmoid(x): return 1/(1+np.exp(-x)) def identy_function(x): return x def init_network(): network = {} network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]]) network['b1'] = np.array([0.1, 0.2, 0.3]) network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]]) network['b2'] = np.array([0.1, 0.2]) network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]]) network['b3'] = np.array([0.1, 0.2]) return network def forward(network, x): W1, W2, W3 = network['W1'], network['W2'], network['W3'] b1, b2, b3 = network['b1'], network['b2'], network['b3'] a1 = np.dot(x, W1) + b1 z1 = sigmoid(a1) a2 = np.dot(z1, W2) + b2 z2 = sigmoid(a2) a3 = np.dot(z2, W3) + b3 y = identy_function(a3) return y network = init_network() x = np.array([1.0, 0.5]) y = forward(network, x) print(y)
반응형'딥러닝' 카테고리의 다른 글
미니배치 학습 구현하기 (0) 2020.01.16 2층 신경망 클래스 구현하기 (0) 2020.01.16 손실함수와 경사법 (0) 2020.01.16 활성화함수 (0) 2020.01.10 퍼셉트론 (0) 2020.01.09